4.8 Article Proceedings Paper

A molecularly imprinted catalyst designed by a computational approach in catalysing a transesterification process

Journal

BIOSENSORS & BIOELECTRONICS
Volume 20, Issue 6, Pages 1068-1075

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2004.02.032

Keywords

artificial enzymes; lipase; molecular imprinting; molecular modelling; transesterification

Ask authors/readers for more resources

A computational approach was developed to optimize the monomer formulation of molecularly imprinted catalysts. A virtual library of the intermediates of a lipase-catalysed transesterification process was constructed using Chem3D software with p-nitrophenyl acetate as substrate. The energies of the intermediates were minimized using the semi-empirical MOPAC method with the most stable intermediate expected to lead to a higher turn over rate. According to the optimization results. a MIC was prepared by co-polymerising 4(5)-vinylimidazole and itaconic acid with trimethylpropanol trimethacrylate micro spheres in the presence of p-nitrophenyl acetate. The MIC achieved of the transesterification process between p-nitrophenyl acetate and hexanol with a turn over rate of 26.2 min(-1), and showed substrate specificity towards its template with a 6.5-fold preference for p-nitrophenyl acetate over p-nitrophenyl salicylate. (C) 2004 Elsevier B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available