4.5 Review

Ultrafast phase transitions and lattice dynamics probed using laser-produced x-ray pulses

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 16, Issue 49, Pages R1517-R1536

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/16/49/R04

Keywords

-

Ask authors/readers for more resources

When intense femtosecond laser pulses are focused on solid targets short-lived microplasmas are formed which emit bursts of x-rays with kilovolt photon energies. Under the proper conditions x-ray pulses as short as a few hundred femtoseconds can be produced. These x-ray pulses enable ultrafast x-ray spectroscopy using pump-probe schemes where the x-ray pulses serve as probe pulses. This article describes time-resolved x-ray diffraction experiments which reveal changes in the atomic structure with a time resolution of a few hundred femtoseconds. In particular, we have studied solid-to-liquid phase transitions in semiconductors induced by femtosecond photoexcitation and the accompanying thermoacoustic phenomena. We were able to monitor the changes in the atomic position underlying a coherent optical phonon mode. These and a number of other lattice dynamics experiments discussed here demonstrate the feasibility and usefulness of ultrafast time-resolved x-ray diffraction. Future applications in many other fields of science can be foreseen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available