4.6 Article

Watching hydrogen bonds break: A transient absorption study of water

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 108, Issue 50, Pages 10957-10964

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp046711r

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM061137, R01 GM061137-02] Funding Source: Medline

Ask authors/readers for more resources

Ultrafast infrared transient absorption measurements of the complete hydroxyl OD stretching mode spectrum of HOD in water, from 100 fs to tens of picoseconds, observe hydrogen bond breaking and monitor the equilibration of the hydrogen bond network in water. In addition, the vibrational lifetime, the time constant for hydrogen bond breaking, and the rate of orientational relaxation are determined. The reactant and photoproduct spectra of the hydrogen bond breaking process are identified by decomposing the transient spectra into two components, the initial spectrum associated with vibrational excited states (reactants) and the long-time spectrum associated with broken hydrogen bonds (photoproducts). By properly taking into account the perturbation of the reactant spectrum decay by the growth of the photoproduct spectrum, it is found that the vibrational relaxation (1.45 ps) and orientational relaxation (1.53 ps) are wavelength independent and, therefore, independent of the degree of hydrogen bonding. Energy deposited into water by vibrational relaxation does not immediately break a hydrogen bond by predissociation nor produce a thermally equilibrated hydrogen bond distribution at an elevated temperature. Following deposition of energy by vibrational relaxation, the hydrogen bond breaking time is 800 fs, and there is a transient period of several picoseconds during which the hydrogen bond distribution is not in thermal equilibrium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available