4.6 Article

Streptococcus pneumoniae-induced p38 MAPK-dependent phosphorylation of RelA at the interleukin-8 promotor

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 51, Pages 53241-53247

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M313702200

Keywords

-

Ask authors/readers for more resources

Streptococcus pneumoniae is the major cause of community-acquired pneumonia and one of the most common causes of death by infectious disease in industrialized countries. Little is known concerning the mechanisms of target cell activation in this disease. The present study shows that NF-kappaB and p38 MAPK signaling pathways contribute to chemokine synthesis by lung epithelial cells in response to pneumococci. In infected lungs of mice pneumococci stimulate expression of the interleukin (IL)-8 homolog keratinocyte-derived chemokine and granulocyte-macrophage colony-stimulating factor, as well as activate p38 MAPK. Human bronchial epithelium was chosen as a cellular model, because it establishes the first barrier against pathogens, and little is known about its function in innate immunity. Pneumococci infection induces expression of IL-8 and granulocyte-macrophage colony-stimulating factor as well as activation of p38 MAPK in human bronchial epithelial cells (BEAS-2B). Inhibition of p38 MAPK activity by SB202190 and SB203580 blocks pneumococci-induced cytokine release. In mouse lungs in vivo as well as in cultured cells, pneumococci activate NF-kappaB in an IkappaB kinase-dependent manner. Inhibition of p38 MAPK by chemical inhibitors or by RNA interference targeting p38alpha reduces pneumococci-induced NF-kappaB-dependent gene transcription. Blockade of p38 activity did not affect inducible nuclear translocation and recruitment of NF-kappaB/RelA to the IL-8 promotor but did reduce the level of phosphorylated RelA ( serine 536) at IL-8 promotor and inhibited pneumococci-mediated recruitment of RNA polymerase II to IL-8 promotor. Thus, p38 MAPK contributes to pneumococci-induced chemokine transcription by modulating p65 NF-kappaB-mediated transactivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available