4.8 Article

Potent inhibition of huntingtin and cytotoxicity by a disulfide bond-free single-domain intracellular antibody

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0408134101

Keywords

Huntington's disease; neurodegeneration; yeast-surface display; protein engineering; directed evolution

Ask authors/readers for more resources

Huntington's disease (HID) is a progressive neurodegenerative disorder caused by an expansion in the number of polyglutamine-encoding CAG repeats in the gene that encodes the huntingtin (htt) protein. A property of the mutant protein that is intimately involved in the development of the disease is the propensity of the glutamine-expanded protein to misfold and generate an N-terminal proteolytic htt fragment that is toxic and prone to aggregation. Intracellular antibodies (intrabodies) against htt have been shown to reduce htt aggregation by binding to the toxic fragment and inactivating it or preventing its misfolding. Intrabodies may therefore be a useful gene-therapy approach to treatment of the disease. However, high levels of intrabody expression have been required to obtain even limited reductions in aggregation. We have engineered a single-domain intracellular antibody against htt for robust aggregation inhibition at low expression levels by increasing its affinity in the absence of a disulfide bond. Furthermore, the engineered intrabody variable light-chain (V-L)12.3, rescued toxicity in a neuronal model of HD. We also found that V(L)12.3 inhibited aggregation and toxicity in a Saccharomyces cerevisiae model of HD. V(L)123 is significantly more potent than earlier anti-htt intrabodies and is a potential candidate for gene therapy treatment for HID. To our knowledge, this is the first attempt to improve affinity in the absence of a disulfide bond to improve intrabody function. The demonstrated importance of disulfide bond-independent binding for intrabody potency suggests a generally applicable approach to the development of effective intrabodies against other intracellular targets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available