4.7 Article

First-principles study of the rotational transitions of H2 physisorbed over benzene

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 121, Issue 24, Pages 12618-12625

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1813435

Keywords

-

Ask authors/readers for more resources

In the ongoing search for promising compounds for hydrogen storage, novel porous metal-organic frameworks (MOFs) have been discovered recently [M. Eddadoudi, J. Kim, N. L. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Science 295, 469 (2002); N. L. Rosi, J. Eckert, M. Eddadoudi, D. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Science 300, 1127 (2003)]. Binding sites in these MOFs were deduced from inelastic neutron scattering (INS) spectroscopy of the rotational transitions of the adsorbed molecular hydrogen. In light of this discovery, it is important to have a fundamental understanding of hydrogen adsorption at different sites in this class of MOF materials. As a first step, here we study the case of H-2 adsorbed on benzene as a model of the organic linkers in the microporous crystal. We access the density functional theory results by comparing with correlated ab initio methods, e.g., second-order Moller-Plesset and coupled cluster with noniterative triple excitations. Different approximations for the exchange-correlation potentials were accessed for a set of relevant properties (binding energy, energetically favored configuration, and distance between the adsorbents and adsorbates). In particular, theoretical rotational spectra of the adsorbed H-2 were obtained that could be compared to the experimental INS spectra. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available