4.7 Article

Molecular interpretation of water structuring and destructuring effects: Hydration of alkanediols

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 121, Issue 24, Pages 12402-12410

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1819892

Keywords

-

Ask authors/readers for more resources

Molecular electrostatic potential (MESP) guidelines are employed for understanding the reactivity and hydration patterns in alkanediol molecules. The deeper oxygen lone pair MESP minima indicate stronger basicity of 1,n-diols and 2,4-pentanediol (2,4-PeD) as compared to that of vicinal diols. The existence and strength of the intramolecular hydrogen bond in diols are gauged in terms of the electron density at the bond saddle points. A model named electrostatic potential for intermolecular complexation (EPIC) is used for generating the structures of hydrated complexes, which are subsequently subjected to ab initio calculations at Moller-Plesset second-order perturbation level of theory. Further, the nature of water...water as well as diol...water interactions is appraised employing many-body energy decomposition analysis. It is seen that water...water interactions are more favorable in vicinal diol...6H(2)O than those in 1,n-diol...6H(2)O (n=3, 4, 5,...) complexes. Exactly opposite trends are shown by diol...water interaction energies. Thus vicinal diols, being more effective at strengthening water.water network, are expected to act as water structuring agents, whereas the non-vicinal diols are expected to be water destructuring agents. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available