4.6 Article

Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States -: art. no. D24307

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 109, Issue D24, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2004JD004869

Keywords

ozone; GOME; TEXAQS; Houston; nitrogen dioxide; formaldehyde

Ask authors/readers for more resources

We compare tropospheric measurements of nitrogen dioxide (NO2) and formaldehyde ( HCHO) from the Global Ozone Monitoring Experiment (GOME) satellite instrument with in situ measurements over eastern Texas and the southeast United States. On average, the GOME and in situ measurements of tropospheric NO2 and HCHO columns are consistent despite pronounced sampling differences. The geometric mean in situ to GOME ratios over the campaign are 1.08 for NO2 and 0.84 for HCHO, with corresponding geometric standard deviations of 1.27 and 1.38. The correlation of the observed column spatial variability between the two NO2 measurement sets is encouraging before (r(2) = 0.54, n = 18) and after (r(2) = 0.67, n = 18) correcting for a sampling bias. Mean relative vertical profiles of HCHO and NO2 calculated with a global three-dimensional model (GEOS-CHEM) and used in the GOME retrieval are highly consistent with in situ measurements; differences would affect the retrieved NO2 and HCHO columns by a few percent. GOME HCHO columns over eastern Texas include contributions from anthropogenic volatile organic compound (VOC) emissions but are dominated by biogenic VOC emissions at the regional scale in August-September when HCHO columns are within 20% of those over the southeastern United States. In situ measurements show that during summer the lowest 1500 m ( the lower mixed layer) contains 75% of the tropospheric NO2 column over Houston and Nashville, and 60% of the HCHO column over Houston. Future validation of space-based measurements of tropospheric NO2 and HCHO columns over polluted regions should include coincident in situ measurements that span the entire satellite footprint, especially in the heterogeneous mixed layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available