4.6 Article

Covalent functionalization of single-walled carbon nanotubes for materials applications

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 108, Issue 51, Pages 11151-11159

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp046274g

Keywords

-

Ask authors/readers for more resources

Covalent functionalization of single-walled carbon nanotubes (SWNTs) has significantly expanded the utility of the nanotube structure. Covalent sidewall functionalization has been employed to increase the solubility of these materials, which allows for the manipulation and processing of these otherwise insoluble nanotubes. Increased solubility leads to better dispersion in polymeric systems. Functionalization can be performed selectively wherein the metallic SWNTs react faster than the semiconductors. This has allowed a separation of carbon nanotubes by type. Covalent sidewall functionalization also allows nanotube-based composite formation where the functional group is well mixed with the polymer matrix. This has led to dramatic increases in the modulus of elastomers while retaining their elongation-at-break properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available