4.6 Article

Charge transport mechanisms in microcrystalline silicon

Journal

APPLIED PHYSICS LETTERS
Volume 92, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2828991

Keywords

-

Ask authors/readers for more resources

A heterogeneous charge transport model for microcrystalline silicon based on fluctuation-induced tunneling is presented that fits the low-temperature saturation observed in dark conductivity measurements and accounts for the film microstructure. Excellent agreement is found when the model is applied to data reported in the literature, particularly for highly crystalline samples, which produce the highest performance transistors. Values obtained for the three fitting parameters are consistent with typical measurements of microcrystalline silicon film morphology and the conduction band offset between amorphous and crystalline silicons. (c) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available