4.6 Article

Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 53, Pages 55886-55894

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M408766200

Keywords

-

Funding

  1. NEI NIH HHS [T32 EY 07123-09, EY 12095] Funding Source: Medline
  2. NIDA NIH HHS [DA 14896] Funding Source: Medline

Ask authors/readers for more resources

Little is known about the molecular mechanism of Schiff base hydrolysis in rhodopsin. We report here our investigation into this process focusing on the role of amino acids involved in a hydrogen bond network around the retinal Schiff base. We find conservative mutations in this network (T94I, E113Q, S186A, E181Q, Y192F, and Y268F) increase the activation energy (E-a) and abolish the concave Arrhenius plot normally seen for Schiff base hydrolysis in dark state rhodopsin. Interestingly, two mutants ( T94I and E113Q) show dramatically faster rates of Schiff base hydrolysis in dark state rhodopsin, yet slower hydrolysis rates in the active MII form. We find deuterium affects the hydrolysis process in wild-type rhodopsin, exhibiting a specific isotope effect of similar to2.5, and proton inventory studies indicate that multiple proton transfer events occur during the process of Schiff base hydrolysis for both dark state and MII forms. Taken together, our study demonstrates the importance of the retinal hydrogen bond network both in maintaining Schiff base integrity in dark state rhodopsin, as well as in catalyzing the hydrolysis and release of retinal from the MII form. Finally, we note that the dramatic alteration of Schiff base stability caused by mutation T94I may play a causative role in congenital night blindness as has been suggested by the Oprian and Garriga laboratories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available