4.5 Review

Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jchromb.2004.10.003

Keywords

reviews; biomarker; oxidative stress

Ask authors/readers for more resources

L-Tyrosine and L-tyrosine residues in proteins are attacked by various reactive-nitrogen species (RNS) including peroxynitrite to form 3-nitrotyrosine (NO(2)Tyr) and protein-associated 3-nitrotyrosine (NO(2)TyrProt). Circulating NO(2)Tyr and NO(2)TyrProt have been suggested and are widely used as biomarkers of oxidative stress in humans. In this article the mass spectrometry (MS)-based analytical methods recently reported for the quantification of circulating levels of NO(2)Tyr and NO(2)TyrProt are discussed. These methodologies differ in sensitivity. selectivity, specificity and accessibility to interferences with the latter mainly arising from artifactual formation of NO(2)Tyr and NO(2)TyrProt during sample treatment such as acidification and chemical derivatization. Application of these methodologies to healthy normal humans revealed basal circulating levels for NO(2)Tyr which range between 0.7 and 64 nM, i.e. by two orders of magnitude. Application of gas chromatography-tandem mass spectrometry (GC-tandem MS) methods by two independent research groups by using two different protocols to avoid artifactual nitration Of L-tyrosine revealed almost identical mean plasma levels of the order of 1.0 nM in healthy humans. The lower limits of quantitation (LOQ) of these methods were 0.125 and 0.3 nM, respectively. This order of magnitude for basal NO(2)Tyr is supported by two liquid chromatography-tandem mass spectrometry (LC-tandem MS) methods with LOQ values of 4.4 and 1.4 nM. On the basis of the data provided by GC-tandem MS and LC-tandem MS the use of a range of 0.5-3 nM for NO(2)Tyr and of 0.6 pmol/mg plasma protein or a molar ratio of 3-nitrotyrosine to tyrosine in plasma proteins of the order of 1:10(6) for NO(2)TyrProt in plasma of healthy humans as reference values appear reasonably justified. Recently reported clinical studies involving 3-nitrotyrosine as a biomarker of oxidative stress are discussed in particular from the analytical point of view. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available