4.7 Article

Modeling of the mechanical properties of nanoparticle/polymer composites

Journal

POLYMER
Volume 46, Issue 2, Pages 553-562

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2004.11.022

Keywords

molecular dynamics; nanoparticles; nanocomposites

Ask authors/readers for more resources

A continuum-based elastic micromechanics model is developed for silica nanoparticle/polyimide composites with various nanoparticle/polyimide interfacial treatments. The model incorporates the molecular structures of the nanoparticle, polyimide, and interfacial regions, which are determined using a molecular modeling method that involves coarse-grained and reverse-mapping techniques. The micromechanics model includes an effective interface between the polyimide and nanoparticle with properties and dimensions that are determined using the results of molecular dynamics simulations. It is shown that the model can be used to predict the elastic properties of silica nanoparticle/polyimide composites for a large range of nanoparticle radii, 10-10,000 Angstrom. For silica nanoparticle radii above 1000 Angstrom, the predicted properties are equal to those predicted using the standard Mori-Tanaka micromechanical approach, which does not incorporate the molecular structure. It is also shown that the specific silica nanoparticle/polynnide interface conditions have a significant effect on the composite mechanical properties for nanoparticle radii below 1000 Angstrom. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available