4.8 Article

Velocity profiles in repulsive athermal systems under shear

Journal

PHYSICAL REVIEW LETTERS
Volume 94, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.94.016001

Keywords

-

Ask authors/readers for more resources

We conduct molecular dynamics simulations of athermal systems undergoing boundary-driven planar shear flow in two and three spatial dimensions. We find that these systems possess nonlinear mean velocity profiles when the velocity u of the shearing wall exceeds a critical value u(c). Above u(c), we also show that the packing fraction and mean-square velocity profiles become spatially dependent with dilation and enhanced velocity fluctuations near the moving boundary. In systems with overdamped dynamics, u(c) is only weakly dependent on packing fraction phi. However, in systems with underdamped dynamics, u(c) is set by the speed of shear waves in the material and tends to zero as phi approaches phi(c), which is near random close packing at small damping. For underdamped systems with phi

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available