4.6 Article

The SNARE proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells -: Regulation by distinct cysteine-rich domains

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 2, Pages 1236-1240

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M410674200

Keywords

-

Funding

  1. Biotechnology and Biological Sciences Research Council [C16435] Funding Source: Medline
  2. Wellcome Trust [070835] Funding Source: Medline

Ask authors/readers for more resources

SNAP-25 and its ubiquitously expressed homologue, SNAP-23, are SNARE proteins that are essential for regulated exocytosis in diverse cell types. Recent work has shown that SNAP-25 and SNAP-23 are partly localized in sphingolipid/cholesterol-rich lipid raft domains of the plasma membrane and that the integrity of these domains is important for exocytosis. Here, we show that raft localization is mediated by a 36-amino-acid region of SNAP-25 that is also the minimal sequence required for membrane targeting; this domain contains 4 closely spaced cysteine residues that are sites for palmitoylation. Analysis of endogenous levels of SNAP-25 and SNAP-23 present in lipid rafts in PC12 cells revealed that SNAP-23 (54% raft-associated) was almost 3-fold more enriched in rafts when compared with SNAP-25 (20% raft-associated). We report that the increased raft association of SNAP-23 occurs due to the substitution of a highly conserved phenylalanine residue present in SNAP-25 with a cysteine residue. Intriguingly, although the extra cysteine in SNAP-23 enhances its raft association, the phenylalanine at the same position in SNAP-25 acts to repress the raft association of this protein. These different raft-targeting signals within SNAP-25 and SNAP-23 are likely important for fine-tuning the exocytic pathways in which these proteins operate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available