4.6 Article

Ferromagnetic resonance and ac conductivity of a polymer composite of Fe3O4 and Fe3C nanoparticles dispersed in a graphite matrix -: art. no. 024304

Journal

JOURNAL OF APPLIED PHYSICS
Volume 97, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1836855

Keywords

-

Ask authors/readers for more resources

Ferromagnetic resonance (FMR) and ac conductivity have been applied to study a polymer composite containing as filler a binary mixture of magnetite (Fe3O4) and cementite (Fe3C) nanoparticles (30-50 nm) dispersed in a diamagnetic carbon matrix, which was synthesized by the carburization of nanocrystalline iron. Ac conductivity measurements showed thermally activated behavior involving a range of activation energies and power law frequency dependence at high frequencies similar to conducting polymer composites randomly filled with metal particles. Ferromagnetic resonance measurements revealed a relatively narrow FMR line at high temperatures indicating the presence of ferromagnetic nanoparticles, where thermal fluctuations and interparticle interactions determine the FMR temperature variation. An abrupt change of the FMR spectra was observed at T<81 K (DeltaTless than or equal to1 K) coinciding with a sharp anomaly resolved in the temperature derivative of the ac conductivity. This behavior is attributed to the Verwey transition of Fe3O4 nanoparticles, where the concurrent skin depth variation unveils the FMR of large magnetite conglomerates and thus allows discriminating their contribution from relatively isolated nanoparticles. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available