4.8 Article

Organic vapor sensing with ionic liquids entrapped in alumina nanopores on quartz crystal resonators

Journal

ANALYTICAL CHEMISTRY
Volume 77, Issue 2, Pages 615-619

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac048436a

Keywords

-

Ask authors/readers for more resources

We report on a concept for vapor sensing with the quartz crystal microbalance where the vapor phase is absorbed into small droplets of an ionic liquid. The liquid is contained in the pores of a nanoporous alumina layer, created on the front electrode of the quartz crystal by anodization. Ionic liquids are attractive for vapor sensing because-being liquids-they equilibrate very fast, while at the same time having negligible vapor pressure. Containing the ionic liquids inside cylindrical cavities of a solid matrix removes all problems related to the liquid's softness as well as the possibility of dewetting and flow. The absence of viscoelastic effects is evidenced by the fact that the bandwidth of the resonance remains unchanged during the uptake of solvent vapor. The Henry constants for a number of solvents have been measured.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available