4.8 Article

Determination of methoxyphenols in ambient atmospheric particulate matter: Tracers for wood combustion

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 39, Issue 2, Pages 631-637

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es0486871

Keywords

-

Funding

  1. NIOSH CDC HHS [R03-OH007656] Funding Source: Medline

Ask authors/readers for more resources

Combustion of wood and other biomass fuels produces source-specific organic compounds arising from pyrolysis of lignin, including substantial amounts of 4-substituted methoxylated phenolic compounds (methoxyphenols). These compounds have been used as atmospheric markers to determine the contribution of wood smoke to ambient atmospheric fine particulate matter (PM). However, reliable quantification of methoxyphenols represents an analytical challenge because these compounds are polar, semivolatile, and somewhat reactive. We report herein an improved gas chromatographic-mass spectrometric (GC/MS) method for the sensitive and reliable determination of methoxyphenols in low-volume ambient PM samples. Deuterated standard compounds are added to the environmental samples prior to extraction to determine analyte recoveries in each sample. Analytical figures of merit for the assay, as applied to ambient PM2.5 and PM10 samples are as follows: recovery = 63-100%; precision = 2-6%; analytical limit of detection (S/N 2) = 0.002 mug/ mL; limit of quantitation = 0.07-0.45 ng/m(3) (assuming a 14 m(3) sample). The improved method was applied to ambient PM samples collected between 1999 and 2000 in Seattle, WA. Particle-bound methoxyphenol concentrations in the range <0.1 to 22 ng/m(3) were observed and the methoxyphenols were present almost exclusively in the fine (PM2.5) size fraction. We also demonstrated that XRF analysis of samples of atmospheric PM collected on Teflon filters significantly reduced the levels of methoxyphenols measured in the PM samples in subsequent assay of the same filters. Therefore, XRF analysis of filters, commonly undertaken to obtain trace element concentrations for use in source apportionment analyses, would preclude the subsequent analysis of those filters for methoxyphenols and other similarly semivolatile or reactive organic chemicals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available