4.3 Review

Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbapap.2004.09.003

Keywords

methionine oxidation; methionine sulfoxide reductase; oxidative stress; Alzheimer's disease; Parkinson's disease; aging; antioxidants

Ask authors/readers for more resources

Oxidative damage to proteins is considered to be one of the major causes of aging and age-related diseases, and thus mechanisms have evolved to prevent or reverse these modifications. Methionine is one of the major targets of reactive oxygen species (ROS), where it is oxidized to methionine sulfoxide (MetO). Recently, evidence has accumulated suggesting that methionine (Met) oxidation may play an important role in the development and progression of neurodegenerative diseases like Alzheimer's and Parkinson's diseases. Oxidative alteration of Met to Met(O) is reversed by the methionine sulfoxide reductases (consisting of MsrA enzymes that reduce S-MetO and MsrB enzymes that reduce R-MetO, respectively). A major biological role of the Msr system is suggested by the fact that the MsrA null mouse (MT) exhibits a neurological disorder in the form of ataxia (tip toe walking), is more sensitive to oxidative stress, and has a shorter life span (by similar to40%) than wild-type (WT) mice. By their action, the Msr enzymes can regulate protein function, be involved in signal-transduction pathways, and prevent cellular accumulation of faulty proteins. Malfunction of the Msr system can lead to cellular changes resulting in compromised antioxidant defense, enhanced age-associated diseases involving neurodegeneration, and shorter life span. In this review, the function and possible roles of the Msr system in prokaryotes and eukaryotes, in general, and in neurodegenerative diseases, in particular, will be discussed. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available