4.5 Article

Drosophila neuroblast 7-3 cell lineage:: A model system for studying programmed cell death, notch/numb signaling, and sequential specification of ganglion mother cell identity

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 481, Issue 3, Pages 240-251

Publisher

WILEY
DOI: 10.1002/cne.20371

Keywords

cell lineage; neuroblast; programmed cell death; Notch; sanpodo; numb; serotonin; corazonin; NB7-3

Ask authors/readers for more resources

Cell lineage studies provide an important foundation for experimental analysis in many systems. Drosophila neural precursors (neuroblasts) sequentially generate ganglion mother cells (GMCs), which generate neurons and/or glia, but the birth order, or cell lineage, of each neuroblast is poorly understood. The best-characterized neuroblast is NB7-3, in which GMC-1 makes the EW1 serotonergic interneuron and GW motoneuron; GMC-2 makes the EW2 serotonergic interneuron and a programmed cell death; and GMC-3 gives rise to the EW3 interneuron. However, the end of this lineage has not been determined. Here, we use positively marked genetic clones, bromodeoxyuridine (BrdU) labeling, mutations that affect Notch signaling, and antibody markers to further define the end of the cell lineage of NB7-3. We provide evidence that GMC-3 directly differentiates into EW3 and that the sibling neuroblast undergoes programmed cell death. Our results confirm and extend previous work on the early portion of the NB7-3 lineage (Novotny et al. [2002] Development 129:1027-1036; Lundell et al. [2003] Development 130:4109-4121). (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available