4.8 Article

Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 102, Issue 1, Pages 123-133

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2004.09.024

Keywords

nanochannels; nanopore membranes; silicon membranes; microfabrication

Ask authors/readers for more resources

Top-down microfabrication techniques were used to create silicon-based membranes consisting of arrays of uniform channels having a width as small as 7 nm. The measurement of diffusion kinetics of solutes across these membranes under sink conditions reveals non-Fickian behavior as the nanopore width approaches the hydrodynamic diameter of the solute. Zero-order diffusion of interferon is observed at channel width of 20 nm, and the same phenomenon occurs with albumin and 13-nm-wide channels, whereas Fickian diffusion kinetics is seen at 26 nm and larger pore sizes. A prototypical drug delivery device is described that is fitted with a 13-nm nanopore membrane and loaded with radio-labeled BSA. Following subcutaneous implantation in rats, diffusion from the device provided prolonged levels of BSA in the blood. Such a nonmechanical device offers important advantages in drug delivery applications, including zero-order release and high loading capacity. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available