4.8 Article

Reactivity of peroxo forms of the vanadium haloperoxidase cofactor. A DFT investigation

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 3, Pages 953-960

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja046016x

Keywords

-

Ask authors/readers for more resources

Density functional theory has been used to investigate structural, electronic and reactivity properties of complexes related to the peroxo forms of vanadium haloperoxidases (VHPO). In particular, the reactivity of the cofactor as a function of protonation state and environment, which are two factors thought to be crucial in modulating the activity of the enzyme, has been examined. In full agreement with experimental data, results highlight the role of protonation in the activation of the peroxo-vanadium complexes and show that the oxo-transfer step involves the unprotonated axial peroxo oxygen atom, which is easily accessible to substrates in the peroxo form of the enzyme. The role of Lys353, which in the X-ray structure of the peroxide-bound form of vanadium chloroperoxidase is hydrogen bonded to the equatorial oxygen atom of the peroxo group, has been also explored. It is concluded that Lys353 can play a role similar to a W in the activation of the peroxo form of the cofactor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available