4.7 Article

Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson's disease

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 4, Pages 769-777

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4421-04.2005

Keywords

gene therapy; 6-hydroxydopamine; adeno-associated virus; monkey; GDNF; dopamine

Categories

Funding

  1. NINDS NIH HHS [NS 36302, P01 NS036302] Funding Source: Medline
  2. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

The therapeutic potential of glial cell line-derived neurotrophic factor ( GDNF) for Parkinson's disease is likely to depend on sustained delivery of the appropriate amount to the target areas. Recombinant adeno-associated viral vectors ( rAAVs) expressing GDNF may be a suitable delivery system for this purpose. The aim of this study was to define a sustained level of GDNF that does not affect the function of the normal dopamine (DA) neurons but does provide anatomical and behavioral protection against an intrastriatal 6-hydroxydopamine (6-OHDA) lesion in the common marmoset. We found that unilateral intrastriatal injection of rAAV resulting in the expression of high levels of GDNF ( 14 ng/mg of tissue) in the striatum induced a substantial bilateral increase in tyrosine hydroxylase protein levels and activity as well as in DA turnover. Expression of low levels of GDNF (0.04 ng/mg of tissue), on the other hand, produced only minimal effects on DA synthesis and only on the injected side. In addition, the low level of GDNF provided similar to 85% protection of the nigral DA neurons and their projections to the striatum in the 6-OHDA-lesioned hemisphere. Furthermore, the anatomical protection was accompanied by a complete attenuation of sensorimotor neglect, head position bias, and amphetamine-induced rotation. We conclude that when delivered continuously, a low level of GDNF in the striatum ( approximately threefold above baseline) is sufficient to provide optimal functional outcome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available