4.8 Article

Dendritic flux avalanches and nonlocal electrodynamics in thin superconducting films

Journal

PHYSICAL REVIEW LETTERS
Volume 94, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.94.037002

Keywords

-

Ask authors/readers for more resources

We report a mechanism of nonisothermal dendritic flux penetration in superconducting films. Our numerical and analytical analysis of coupled nonlinear Maxwell and thermal diffusion equations shows that dendritic flux pattern formation results from spontaneous branching of propagating flux filaments due to nonlocal magnetic flux diffusion and positive feedback between flux motion and Joule heating. The branching is triggered by a thermomagnetic edge instability, which causes stratification of the critical state. The resulting distribution of thermomagnetic microavalanches is not universal, because it depends on a spatial distribution of defects. Our results are in good agreement with experiments on Nb films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available