4.6 Article

Nanowire-based dye-sensitized solar cells

Journal

APPLIED PHYSICS LETTERS
Volume 86, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1861510

Keywords

-

Ask authors/readers for more resources

We describe the design and performance of a ZnO nanowire-based dye-sensitized solar cell. ZnO nanowires with a branched structure were employed as the wide-band-gap semiconductor to construct dye-sensitized solar cells which exhibit energy conversion efficiencies of 0.5% with internal quantum efficiencies of 70%. The nanowires provide a direct conduction path for electrons between the point of photogeneration and the conducting substrate and may offer improved electron transport compared to films of sintered nanoparticles. The devices have light harvesting efficiencies under 10%, indicating that current densities and efficiencies can be improved by an order of magnitude by increasing the nanowire surface area. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available