4.5 Article

Protective effects of insulin-like growth factor-I on the somatostatinergic system in the temporal cortex of β-amyloid-treated rats

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 92, Issue 3, Pages 607-615

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2004.02889.x

Keywords

Alzheimer's disease; beta-amyloid; IGF-I; somatostatin receptor subtypes; neuroprotection; somatostatin

Ask authors/readers for more resources

Insulin-like growth factor-I (IGF-I) has protective effects against beta-amyloid (Abeta)-induced neuronal cell death. Because alterations of the somatostatinergic system have been described in Alzheimer's disease, we investigated the effects of the Abeta peptide and the possible protective role of IGF-I on the somatostatinergic system of the rat temporal cortex and on cell death and phosphorylated (p)-Akt levels in this area. Abeta25-35 was administered intracerebroventricularly to male rats via an osmotic minipump over 14 days (300 pmol/day). Another group received a subcutaneous IGF-I infusion (50 mug/kg/day), concomitant with Abeta25-35 administration, whereas a third group received IGF-I alone. Abeta25-35 significantly decreased the somatostatin (SRIF)-like immunoreactive content and the SRIF receptor density, as a result of a decrease in the levels of the SRIF receptor subtype 2. The inhibitory effect of SRIF on adenylyl cyclase activity was significantly lower after Abeta25-35 infusion, whereas the levels of the inhibitory G protein subunit Gialpha1, Gialpha2 or Gialpha3 were unaltered. Cell death was increased and p-Akt levels decreased in Abeta25-35-treated animals. IGF-I administration increased immunoreactive IGF-I levels in the temporal cortex and restored all parameters affected by Abeta25-35 to baseline values. These findings suggest that IGF-I prevents the deleterious effect of Abeta25-35 on the somatostatinergic system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available