3.8 Article

Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer

Journal

SCIENCE IN CHINA SERIES D-EARTH SCIENCES
Volume 48, Issue 2, Pages 250-257

Publisher

SCIENCE CHINA PRESS
DOI: 10.1360/02yd0510

Keywords

Tibetan Plateau; sensible heating; East Asia; rainfall; circulation

Ask authors/readers for more resources

Based on the 1958-1999 monthly averaged reanalysis data of the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) and the rainfall data of 160 Chinese surface stations, the relationship between rainfall and the atmospheric circulation anomaly over East Asia (EA) in July and the sensible heating (SH) over the Tibetan Plateau (TP) from April to June (AMJ) is investigated by using the rotational experimental orthogonal function (REOF) method. The results show that the TP is an isolated heating source in this period. The lagged correlation analysis between the first rotational principal component (RPC) of SH over the TP in May and rainfall of EA in July demonstrates that strong SH over the TP before July leads to a positive rainfall anomaly over the TP, the valley between the Yangtze River and Huaihe River, and the regions south and southeast of the TP, and the Sichuan Basin and Yunnan-Guizhou Plateau, but less rainfall anomaly over the regions north, northeast, and west of the TP. Such rainfall anomaly patterns are shown to be well coordinated with those of the circulation and vapor flux fields, and are explained by using the thermal adaptation theory and quasi-stationary large-scale vorticity equation. Therefore, the status of SH over the TP during AMJ can be used as a predictor for the rainfall anomaly over EA, especially in the valley between the Yangtze River and Huaihe River.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available