4.4 Article

Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells

Journal

DEVELOPMENTAL DYNAMICS
Volume 232, Issue 2, Pages 487-497

Publisher

WILEY
DOI: 10.1002/dvdy.20247

Keywords

human embryonic stem cells; differentiation; development; vascular; endothelial cells; smooth muscle cells; vasculogenesis; angiogenesis

Ask authors/readers for more resources

The study of the cascade of events of induction and sequential gene activation that takes place during human embryonic development is hindered by the unavailability of postimplantation embryos at different stages of development. Spontaneous differentiation of human embryonic stem cells (hESCs) can occur by means of the formation of embryoid bodies (EBs), which resemble certain aspects of early embryos to some extent. Embryonic vascular formation, vasculogenesis, is a sequential process that involves complex regulatory cascades. In this study, changes of gene expression along the development of human EBs for 4 weeks were studied by large-scale gene screening. Two main clusters were identified-one of downregulated genes such as POU5, NANOG, TDGF1/Cripto (TDGF, teratocarcinoma-derived growth factor-1), LIN28, CD24, TERF1 (telomeric repeat binding factor-1), LEFTB (left-right determination, factor B), and a second of up-regulated genes such as TWIST, WNT5A, WT1, AFP, ALB, NCAM1. Focusing on the vascular system development, genes known to be involved in vasculogenesis and angiogenesis were explored. Up-regulated genes include vasculogenic growth factors such as VEGFA, VEGFC, FIGF (VEGFD), ANG1, ANG2, TGFbeta3, and PDGFB, as well as the related receptors FLT1, FLT4, PDGFRB, TGFbetaR2, and TGFbetaR3, The reproducibility of the array data was verified independently and illustrated that many genes known to be involved in vascular development are activated during the differentiation of hESCs in culture. Hence, the analysis of the vascular system can be extended to other differentiation pathways, allocating human EBs as an in vitro model to study early human development. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available