4.7 Article

Isolation and structural characterisation of 8-O-4/8-O-4- and 8-8/8-O-4-coupled dehydrotriferulic acids from maize bran

Journal

PHYTOCHEMISTRY
Volume 66, Issue 3, Pages 363-371

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2004.12.008

Keywords

Zea mays L.; gramineae; maize bran; cell wall cross-linking; triferulic acid; triferulate; ferulate acid; ferulate; arabinoxylans; dietary fibre

Ask authors/readers for more resources

Two new dehydrotriferulic acids were isolated from saponified maize bran insoluble fiber using Sephadex LH-20 chromatography followed by semi-preparative RP-HPLC. Based on UV-spectroscopy, mass spectroscopy and one- and two-dimensional NMR experiments. the structures were identified as 8-O-4,8-O-4-dehydrotriferulic acid and 8-8(cyclic),8-O-4-dehydrotriferulic acid. Which of the possible phenols in the initially formed 8-8-dehydrodiferulate was etherified by 4-O-8-coupling with ferulate has been unambiguously elucidated. The ferulate dehydrotrimers which give rise to these dehydrotriferulic acids following saponification are presumed. like the dehydrodiferulates. to cross-link polysaccharides. Neither dehydrotriferulic acid described here involves a 5-5-dehydrodiferulic acid unit; only the 5-5-dehydrodimer may be formed intramolecularly. However, whether dehydrotriferulates are capable of cross-linking more than two polysaccharide chains remains open. Although the levels of the isolated ferulate dehydrotrimers are lower than those of the ferulate dehydrodimers, the isolation now of three different dehydrotriferulates indicates that trimers contribute to a strong network cross-linking plant cell wall polysaccharides. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available