4.5 Article

The effect of cooling rate on the solidification of INCONEL 718

Ask authors/readers for more resources

The superalloy INCONEL 718 (IN718) is a commonly used material in aerospace and turbine components. The advantage of this type of material with sluggish precipitation-hardening kinetics is that IN718 is readily weldable. Both wrought and cast parts are used and welded together. While the alloy has been studied previously, new production processes such as laser treatment demand better knowledge of the solidification process in IN718. especially at high cooling rates. In this investigation. the solidification process was studied over a wide range of cooling rated by three different experimental techniques: differential thermal analysis (DTA), mirror furnace (MF), and levitation casting. The solidification sequence and the reaction temperatures were identified. The microstructure and the change in growth morphology were also studied. Segregation measurements were performed, and the distribution of Nb was analyzed in detail for the different types of samples. because of its strong impact on the solidification sequence and microstructure. New observations are that the latent heat decreases and the effective partition coefficient increases with increasing cooling rate. The diffusion rate also seems to be enhanced in the first part of primary solidified dendrites. It is suggested that the new observations can be explained by an increased number of lattice defects formed in the solid as the cooling rate increases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available