4.8 Article

High performance n-type carbon nanotube field-effect transistors with chemically doped contacts

Ask authors/readers for more resources

Short channel (similar to80 nm) n-type single-walled carbon nanotube (SWNT) field-effect transistors (FETs) with potassium (K) doped source and drain regions and high-K gate dielectrics (ALD HfO2) are obtained. For nanotubes with diameter similar to1.6 nm and band gap similar to0.55 eV, we obtain n-MOSFET-like devices exhibiting high on-currents due to chemically suppressed Schottky barriers at the contacts, subthreshold swing of 70 mV/decade, negligible ambipolar conduction, and high on/off ratios up to 10(6) at a bias voltage of 0.5 V. The results compare favorably with the state-of-the-art silicon n-MOSFETs and demonstrate the potential of SWNTs for future complementary electronics. The effects of doping level on the electrical characteristics of the nanotube devices are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available