4.4 Article

A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature

Journal

APPLIED PHYSICS B-LASERS AND OPTICS
Volume 112, Issue 3, Pages 287-306

Publisher

SPRINGER
DOI: 10.1007/s00340-013-5504-4

Keywords

-

Funding

  1. Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy
  2. National Nuclear Security Administration [DE-AC04-94-AL85000]

Ask authors/readers for more resources

We measured spectrally and temporally resolved laser-induced incandescence signals from flame-generated soot at laser fluences of 0.01-3.5 J/cm(2) and laser wavelengths of 532 and 1,064 nm. We recorded LII temporal profiles at 681.8 nm using a fast-gated detector and a spatially homogeneous and temporally smooth laser profile. Time-resolved emission spectra were used to identify and avoid spectral interferences and to infer soot temperatures. Soot temperatures reach a maximum of 4,415 +/- A 65 K at fluences a parts per thousand yen0.2 J/cm(2) at 532 nm and 4,424 +/- A 80 K at fluences a parts per thousand yen0.3 J/cm(2) at 1,064 nm. These temperatures are consistent with the sublimation temperature of C-2 of 4,456.59 K. At fluences above 0.5 J/cm(2) at 532 nm, the measured spectra yield an apparent higher temperature after the soot has fully vaporized but well within the laser pulse. This apparent temperature elevation at high fluence is explained by fluorescence interferences from molecules present in the flame. We also measured 3-color LII temporal profiles at detection wavelengths of 451.5, 681.8, and 854.8 nm. The temperatures inferred from these measurements agree well with those measured using spectrally resolved LII. The data discussed in this manuscript are archived as electronic supplementary material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available