4.6 Article

Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution system

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 71, Issue 2, Pages 706-712

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.71.2.706-712.2005

Keywords

-

Ask authors/readers for more resources

The accumulation and fate of model microbial pathogens within a drinking-water distribution system was investigated in naturally grown biofilms formed in a novel pilot-scale water distribution system provided with chlorinated and UV-treated water. Biofilms were exposed to 1-mum hydrophilic and hydrophobic microspheres, Salmonella bacteriophages 2813, and Legionella pneumophila bacteria, and their fate was monitored over a 38-day period. The accumulation of model pathogens was generally independent of the biofilm cell density and was shown to be dependent on particle surface properties, where hydrophilic spheres accumulated to a larger extent than hydrophobic ones. A higher accumulation of culturable legionellae was measured in the chlorinated system compared to the UV-treated system with increasing residence time. The fate of spheres and fluorescence in situ hybridization-positive legionellae was similar and independent of the primary disinfectant applied and water residence time. The more rapid loss of culturable legionellae compared to the fluorescence in situ hybridization-positive legionellae was attributed to a loss in culturability rather than physical desorption. Loss of bacteriophage 2813 plaque-forming ability together with erosion may have affected their fate within biofilms in the pilot-scale distribution system. The current study has demonstrated that desorption was one of the primary mechanisms affecting the loss of microspberes, legionellae, and bacteriophage from biofilms within a pilot-scale distribution system as well as disinfection and biological grazing. In general, two primary disinfection regimens (chlorination and UV treatment) were not shown to have a measurable impact on the accumulation and fate of model microbial pathogens within a water distribution system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available