4.8 Article

Specification of motoneurons from human embryonic stem cells

Journal

NATURE BIOTECHNOLOGY
Volume 23, Issue 2, Pages 215-221

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt1063

Keywords

-

Funding

  1. NICHD NIH HHS [P30 HD03352] Funding Source: Medline
  2. NINDS NIH HHS [R01-NS045926] Funding Source: Medline

Ask authors/readers for more resources

An understanding of how mammalian stem cells produce specific neuronal subtypes remains elusive. Here we show that human embryonic stem cells generated early neuroectodermal cells, which organized into rosettes and expressed Pax6 but not Sox1, and then late neuroectodermal cells, which formed neural tube-like structures and expressed both Pax6 and Sox1. Only the early, but not the late, neuroectodermal cells were efficiently posteriorized by retinoic acid and, in the presence of sonic hedgehog, differentiated into spinal motoneurons. The in vitro-generated motoneurons expressed HB9, HoxC8, choline acetyltransferase and vesicular acetylcholine transporter, induced clustering of acetylcholine receptors in myotubes, and were electrophysiologically active. These findings indicate that retinoic acid action is required during neuroectoderm induction for motoneuron specification and suggest that stem cells have restricted capacity to generate region-specific projection neurons even at an early developmental stage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available