4.5 Article

Stabilization of nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells

Journal

TOXICOLOGICAL SCIENCES
Volume 83, Issue 2, Pages 313-328

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfi027

Keywords

Nrf2; tert-butylhydroquinone; apoptotic cell death; human neural stem cells

Categories

Funding

  1. NIEHS NIH HHS [ES08089, ES09090, ES10042] Funding Source: Medline

Ask authors/readers for more resources

Recent studies indicate that NF-E2 related factor 2 (Nrf2) is a substrate for the ubiquitin-proteasome pathway. The present study is aimed to determine whether increased protein stability is a mechanism by which quinone compounds, like tert-butylhydroquinone (tBHQ), may enhance Nrf2-mediated transcriptional activation and subsequent antioxidant protection. H2O2-induced necrotic cell death, evidenced by transmission electronic microscope (TEM) imaging with no caspase 3 activation and PARP cleavage, was significantly attenuated by pretreatment with tBHQ or overexpression of Nrf2 through advenovirus-mediated infection in human neural stem cells (hNSCs). Microarray analysis showed that those identified antioxidant genes, responsible for antiapoptotic action in IMR-32 cells (J. Li et al., 2002, J. Biol. Chem. 277, 388-394), were also coordinately upregulated through Nrf2-dependent antioxidant responsive element (ARE) activation in hNSC. The stabilization of Nrf2 by tBHQ in IMR-32 cells was evidenced by a pulse-chase assay showing no significant increase in Nrf2 protein synthesis after tBHQ treatment, and by ubiquitin immunoprecipitation showing that tBHQ stabilized ubiquitinated Nrf2. An in vitro proteasomal activity assay showed that tBHQ did not act as a 20S/26S proteasome inhibitor. Nrf2 stabilization by tBHQ also was observed in hNSCs. Taken together, this study suggests that identified antioxidant genes, which were upregulated through tBHQ induced Nrf2 stabilization, confer protection on target cells against H2O2-induced apoptotic cell death in neuroblastoma cells as well as the necrotic cell death in the hNSC. Nrf2 stabilization by pharmacological modulation or adenovirus-mediated Nrf2 overexpression, therefore, might be viable strategies to prevent a wide-spectrum of oxidative stress-related neuronal cell injuries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available