4.4 Article

The effect of particle aggregation on the absorption and emission properties of mono- and polydisperse soot aggregates

Journal

APPLIED PHYSICS B-LASERS AND OPTICS
Volume 104, Issue 2, Pages 343-355

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00340-011-4382-x

Keywords

-

Funding

  1. PERD [C23.006, C11.008]

Ask authors/readers for more resources

This study concerns the effect of soot-particle aggregation on the soot temperature derived from the signal ratio in two-color laser-induced incandescence measurements. The emissivity of aggregated fractal soot particles was calculated using both the commonly used Rayleigh-Debye-Gans fractal-aggregate theory and the generalized Mie-solution method in conjunction with numerically generated fractal aggregates of specified fractal parameters typical of flame-generated soot. The effect of aggregation on soot temperature was first evaluated for monodisperse aggregates of different sizes and for a lognormally distributed aggregate ensemble at given signal ratios between the two wavelengths. Numerical calculations were also conducted to account for the effect of aggregation on both laser heating and thermal emission at the two wavelengths for determining the effective soot temperature of polydisperse soot aggregates. The results show that the effect of aggregation on laser energy absorption is important at low fluences. The effect of aggregation on soot emissivity is relatively unimportant in LII applications to typical laminar diffusion flames at atmospheric pressure, but it can become more important in flames at high pressures due to larger primary particles and wider aggregate distributions associated with enhanced soot loading.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available