4.4 Article

A high-stability semiconductor laser system for a 88Sr-based optical lattice clock

Journal

APPLIED PHYSICS B-LASERS AND OPTICS
Volume 103, Issue 1, Pages 17-25

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00340-010-4232-2

Keywords

-

Funding

  1. LENS [RII3 CT 2003 506350]
  2. Ente CRF
  3. ASI
  4. ESA

Ask authors/readers for more resources

We describe a frequency-stabilized diode laser at 698 nm used for high-resolution spectroscopy of the S-1(0)-P-3(0) strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high-finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high-resolution remote spectroscopy on the Sr-88 clock transition by transferring the laser output over a phase noise-compensated 200-m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7x10(-18) after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 10(14). Furthermore, with an eye toward the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available