4.4 Article

Neuromuscular training improves performance and lower-extremity biomechanics in female athletes

Journal

JOURNAL OF STRENGTH AND CONDITIONING RESEARCH
Volume 19, Issue 1, Pages 51-60

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1519/13643.1

Keywords

knee-injury prevention training; ACL; female sports; dynamic neuromuscular training; knee valgus moment

Categories

Funding

  1. NIAMS NIH HHS [R01-AR049735-01A1] Funding Source: Medline

Ask authors/readers for more resources

The purpose of this study was to examine the effects of a comprehensive neuromuscular training program on measures of performance and lower-extremity movement biomechanics in female athletes. The hypothesis was that significant improvements in measures of performance would be demonstrated concomitant with improved biomechanical measures related to anterior cruciate ligament injury risk. Forty-one female basketball, soccer, and volleyball players (age, 15.3 +/- 0.9 years; weight, 64.8 +/- 9.96 kg; height, 171.2 +/- 7.21 cm) underwent 6 weeks of training that included 4 main components (plyometric and movement, core strengthening and balance, resistance training, and speed training). Twelve age-, height-, and weight-matched controls underwent the same testing protocol twice 6 weeks apart. Trained athletes demonstrated increased predicted 1 repetition maximum squat (92%) and bench press (20%). Right and left single-leg hop distance increased 10.39 cm and 8.53 cm, respectively, and vertical jump also increased from 39.9 +/- 0.9 cm to 43.2 +/- 1.1 cm with training. Speed in a 9.1-m sprint improved from 1.80 +/- 0.02 seconds to 1.73 +/- 0.01 seconds. Pre- and posttest 3-dimensional motion analysis demonstrated increased knee flexion-extension range of motion during the landing phase of a vertical jump (right, 71.9 +/- 1.4degrees to 76.9 +/- 1.4degrees; left, 71.3 +/- 1.5degrees to 77.3 +/- 1.4degrees). Training decreased knee valgus (28%) and varus (38%) torques. Control subjects did not demonstrate significant alterations during the 6-week interval. The results of this study support the hypothesis that the combination of multiple-injury prevention-training components into a comprehensive program improves measures of performance and movement biomechanics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available