3.8 Article

Heat transfer enhancement for finned-tube heat exchangers with winglets

Journal

JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME
Volume 127, Issue 2, Pages 171-178

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1842786

Keywords

-

Ask authors/readers for more resources

This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair The duct was designed to simulate a single passage in a fin-tube heat exchanger Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10(-3) to 14.0 x 10(-3) kg/s. These flow rates correspond to a duct-height Reynolds number range of 670-6300 with a duct height of 1.106 cm and a duct width-to-height ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of 2. At higher Reynolds numbers, the enhancement level is close to 50%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available