4.2 Article

Defibrillation depends on conductivity fluctuations and the degree of disorganization in reentry patterns

Journal

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY
Volume 16, Issue 2, Pages 205-216

Publisher

BLACKWELL FUTURA PUBLISHING, INC
DOI: 10.1046/j.1540-8167.2005.40140.x

Keywords

defibrillation; microscopic heterogeneities; disorganization; virtual electrode polarization; bidomain model

Ask authors/readers for more resources

Defibrillation Depends on Conductivity and Disorganization Introduction: Cardiac fibrillation is the deterioration of the heart's normally well-organized activity into one or more meandering spiral waves, which subsequently break up into many meandering wave fronts. Delivery of an electric shock (defibrillation) is the only effective way of restoring the normal rhythm. This study focuses on examining whether higher degrees of disorganization requires higher shock strengths to defibrillate and whether microscopic conductivity fluctuations favor shock success. Methods and Results: We developed a three-dimensional computer bidomain model of a block of cardiac tissue with straight fibers immersed in a conductive bath. The membrane behavior was described by the Courtemanche human atrial action potential model incorporating electroporation and an acetylcholine(ACh) dependent potassium current. Intracellular conductivities were varied stochastically around nominal values with variations of up to 50%. A single rotor reentry was initiated and, by adjusting the spatial ACh variation, the level of organization could be controlled. The single rotor could be stabilized or spiral wave breakup could be provoked leading to fibrillatory-like activity. For each level of organization, multiple shock timings and strengths were applied to compute the probability of shock success as a function of shock strength. Conclusions: Our results suggest that the level of the small-scale conductivity fluctuations is a very important factor in defibrillation. A higher variation significantly lowers the required shock strength. Further, we demonstrated that success also heavily depends on the level of organization of the fibrillatory episode. In general, higher levels of disorganization require higher shock strengths to defibrillate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available