4.6 Article

Imaging transcription in vivo:: distinct regulatory effects of fast and slow activity patterns on promoter elements from vertebrate troponin I isoform genes

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 562, Issue 3, Pages 815-828

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1113/jphysiol.2004.075333

Keywords

-

Ask authors/readers for more resources

Firing patterns typical of slow motor units activate genes for slow isoforms of contractile proteins, but it remains unclear if there is a distinct pathway for fast isoforms or if their expression simply occurs in the absence of slow activity. Here we first show that denervation in adult soleus and EDL muscles reverses the postnatal increase in expression of troponin I (TnI) isoforms, suggesting that high-level transcription of both genes in mature muscles is under neural control. We then use a combination of in vivo transfection, live muscle imaging and fluorescence quantification to investigate the role of patterned electrical activity in the transcriptional control of troponin I slow (TnIs) and fast (TnIf) regulatory sequences by directly stimulating denervated muscles with pattern that mimic fast and slow motor units. Rat soleus muscles were electroporated with green fluorescent protein (GFP) reporter constructs harbouring 2.7 and 2.1 kb of TnIs and TnIf regulatory sequences, respectively. One week later, electrodes were implanted and muscles stimulated for 12 days. The change in GFP fluorescence of individual muscle fibres before and after the stimulation was used as a measure for transcriptional responses to different patterns of action potentials. Our results indicate that the response of TnI promoter sequences to electrical stimulation is consistent with the regulation of the endogenous genes. The TnIf and TnIs enhancers were activated by matching fast and slow activity patterns, respectively. Removal of nerve-evoked activity by denervation, or stimulation with a mismatching pattern reduced transcriptional activity of both enhancers. These results strongly suggest that distinct signalling pathways couple both fast and slow patterns of activity to enhancers that regulate transcription from the fast and slow troponin I isoforms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available