4.5 Article

FOXC1 transcriptional regulatory activity is impaired by PBX1 in a filamin a-mediated manner

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 25, Issue 4, Pages 1415-1424

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.25.4.1415-1424.2005

Keywords

-

Ask authors/readers for more resources

FOXC1 mutations underlie Axenfeld-Rieger syndrome, an autosomal dominant disorder that is characterized by a spectrum of ocular and nonocular phenotypes and results in an increased susceptibility to glaucoma. Proteins interacting with FOXC1 were identified in human nonpigmented ciliary epithelial cells. Here we demonstrate that FOXC1 interacts with the actin-binding protein filamin A (FLNA). In A7 melanoma cells possessing elevated levels of nuclear FLNA, FOXC1 is unable to activate transcription and is partitioned to an HP1alpha, heterochromatin-rich region of the nucleus. This inhibition is mediated through an interaction between FOXC1 and the homeodomain protein PBX1alpha. In addition, we demonstrate that efficient nuclear and sub-nuclear localization of PBX1 is mediated by FLNA. Together, these data reveal a mechanism by which structural proteins such as FLNA can influence the activity of a developmentally and pathologically important transcription factor such as FOXC1. Given the resemblance of the skeletal phenotypes caused by FOXC1 loss-of-function mutations and FLNA gain-of-function mutations, this inhibitory activity of FLNA on FOXC1 may contribute to the pathogenesis of FLNA-linked skeletal disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available