4.7 Article

Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper

Journal

BIOLOGY AND FERTILITY OF SOILS
Volume 41, Issue 2, Pages 85-94

Publisher

SPRINGER
DOI: 10.1007/s00374-004-0820-9

Keywords

heavy metal contamination; barley yield; basal respiration; soil enzyme activity; lead

Categories

Ask authors/readers for more resources

The effects of increasing rates of Pb, Zn and Cu on extractable heavy metal levels, barley yields, basal respiration and the activities of catalase, urease, invertase and acid phosphatase were investigated in two soils in a 2-year greenhouse experiment. In the first year, barley yields were decreased by increasing additions of Pb, Zn and Cu. In the second year, increased yields were recorded at lower rates of addition of all three metals in both the chestnut and chernozem soils. Yield depressions were most marked for added Cu and least marked for Pb but, in contrast, accumulation of heavy metals in grain, in excess of recommended limits, was most pronounced for Pb and did not occur for Cu. Increasing rates of all three metals caused a decrease in basal respiration; the degree of inhibition was generally greater in the second than in the first year. After 1 year of incubation, increasing rates of addition of metals reduced all tested enzyme activities. However, after 2 years, the pattern of response was more complex, with increases in enzyme activities being noted at lower rates of addition of all three metals. In general, invertase and urease activities were more markedly inhibited by heavy metal contamination than those of catalase and phosphatase. Ammonium acetate-extractable heavy metal concentrations in soils were less after 2 years than 1 years reaction time due to their transformation into less labile forms. Significant negative correlations between grain yield, basal respiration and enzyme activities were observed in both years.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available