4.5 Article Proceedings Paper

Interfacial reaction and electrochemical properties of dense (La,Sr) CoO3-δ cathode on YSZ(100)

Journal

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
Volume 66, Issue 2-4, Pages 343-348

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2004.06.057

Keywords

interfaces; ceramics; diffusion; electrochemical properties

Ask authors/readers for more resources

Reaction between La0.6Sr0.4CoO3 electrode and yttria stabilized zirconia electrolyte (YSZ) was investigated at 973 K to estimate its effect on performance of a solid oxide fuel cell at reduced operation temperatures. Since La0.6Sr0.4CoO3 is a good mixed conductor of electron and oxide ion, oxygen incorporation through the bulk diffusion is fairly fast if it is compared to the surface diffusion and reaction at triple phase boundaries (TPB). In order to simplify the oxygen reaction pathway, a dense electrode film of La0.6Sr0.04CoO3 was fabricated on an YSZ single crystal by pulsed laser deposition. Electrochemical measurements and secondary ion mass spectrometry (SIMS) analysis were performed before and after a long-term operation test for 3800 h at 973 K. Electrochemical impedance analysis enabled us to distinguish the contribution of the electrode/electrolyte interface resistance from the total electrochemical resistance. The interface resistance was almost independent of oxygen partial pressure, and increased with time according to the parabolic rate law. After the long-term test, Sr rich layer was found between the electrode and the electrolyte. The parabolic rate constant, k(p), was obtained from the time dependence of the resistance and the thickness of the reaction layer. It was about 10(-17) to 10(-18) cm(2) s(-1) at 973 K, on the extrapolated line from the literature data measured at higher temperatures. (c) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available