4.7 Review

High specificity generally characterizes mycorrhizal association in rare lady's slipper orchids, genus Cypripedium

Journal

MOLECULAR ECOLOGY
Volume 14, Issue 2, Pages 613-626

Publisher

WILEY
DOI: 10.1111/j.1365-294X.2005.02424.x

Keywords

Ceratobasidiaceae; myco-heterotrophy; Rhizoctonia; Sebacinaceae; specifity; Tulasnellaceae

Ask authors/readers for more resources

Lady's slipper orchids (Cypripedium spp.) are rare terrestrial plants that grow throughout the temperate Northern Hemisphere. Like all orchids, they require mycorrhizal fungi for germination and seedling nutrition. The nutritional relationships of adult Cypripedium mycorrhizae are unclear, however, Cypripedium distribution may be limited by mycorrhizal specificity, whether this specificity occurs only during the seedling stage or carries on into adulthood. We attempted to identify the primary mycorrhizal symbionts for 100 Cypripedium plants, and successfully did so with two Cypripedium calceolus, 10 Cypripedium californicum, six Cypripedium candidum, 16 Cypripedium fasciculatum, two Cypripedium guttatum, 12 Cypripedium montanum, and 11 Cypripedium parviflorum plants from a total of 44 populations in Europe and North America, yielding fungal nuclear large subunit and mitochondrial large subunit sequence and RFLP (restriction fragment length polymorphism) data for 59 plants. Because orchid mycorrhizal fungi are typically observed without fruiting structures, we assessed fungal identity through direct PCR (polmerase chain reaction) amplification of fungal genes from mycorrhizally colonized root tissue. Phylogenetic analysis revealed that the great majority of Cypripedium mycorrhizal fungi are members of narrow clades within the fungal family Tulasnellaceae. Rarely occurring root endophytes include members of the Sebacinaceae, Ceratobasidiaceae, and the ascomycetous genus, Phialophora. C. califomicum was the only orchid species with apparently low specificity, as it associated with tulasnelloid, ceratobasidioid, and sebacinoid fungi m roughly equal proportion. Our results add support to the growing literature showing that high specificity is not limited to nonphotosynthetic plants, but also occurs in photosynthetic ones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available