4.6 Article

Effects of deposition temperature and hydrogen flow rate on the properties of the Al-doped ZnO thin films and amorphous silicon thin-film solar cells

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 112, Issue 4, Pages 877-883

Publisher

SPRINGER
DOI: 10.1007/s00339-012-7270-2

Keywords

-

Funding

  1. NSC [99-2221-E-390-013-MY2, 101-2221-E-005-065]

Ask authors/readers for more resources

A compound of 98 mol% ZnO and 1 mol% Al2O3 (AZO, Al:Zn = 98:2) was sintered at 1350 A degrees C as a target and the AZO thin films were deposited on glass using a radio frequency magnetron sputtering system. The effects of deposition temperature (from room temperature to similar to 300 A degrees C) on the optical transmission spectrum of the AZO thin films were studied. The Burstein-Moss shift was observed and used to prove that defects in the AZO thin films decreased with increasing deposition temperature. The variations in the optical band gap (E (g)) values of the AZO thin films were evaluated from plots of (alpha hv)(2)=c(h nu-E (g)), revealing that the measured E (g) values increased with increasing deposition temperature. The effects of the H-2 flow rate during deposition (0 %similar to 11.76 %, deposition temperature of 200 A degrees C) on the crystallization, morphology, resistivity, carrier concentration, carrier mobility, and optical transmission spectrum of the AZO thin films were measured. The chemical structures of the Ar-deposited and 2 % H-2-flow rate-deposited AZO thin films (both were deposited at 200 A degrees C) were investigated by XPS to clarify the mechanism of improvement in resistivity. The prepared AZO thin films were also used as transparent electrodes to fabricate amorphous silicon thin-film solar cells, and their properties were also measured.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available