4.5 Article

First demonstration of a functional role for central nervous system betaine/γ-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.104.068825

Keywords

-

Funding

  1. NINDS NIH HHS [N01-NS-9-2313] Funding Source: Medline

Ask authors/readers for more resources

In a recent study, EF1502 [N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]- 3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo [d] isoxazol-3-ol], which is an N-substituted analog of the GAT1-selective GABA uptake inhibitor exo-THPO (4-amino-4,5,6,7-tetrahydrobenzo[ d] isoxazol-3-ol), was found to inhibit GABA transport mediated by both GAT1 and GAT2 in human embryonic kidney (HEK) cells expressing the mouse GABA transporters GAT1 to 4 ( mGAT1- 4). In the present study, EF1502 was found to possess a broad-spectrum anticonvulsant profile in animal models of generalized and partial epilepsy. When EF1502 was tested in combination with the clinically effective GAT1-selective inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl] nipecotic acid] or LU-32-176B [N-[4,4-bis(4-fluorophenyl)- butyl]-3-hydroxy-4- amino-4,5,6,7-tetrahydrobenzo[d] isoxazol-3-ol], another GAT1-selective N- substituted analog of exo-THPO, a synergistic rather than additive anticonvulsant interaction was observed in the Frings audiogenic seizure-susceptible mouse and the pentylenetetrazol seizure threshold test. In contrast, combination of the two mGAT1-selective inhibitors, tiagabine and LU-32-176B, resulted in only an additive anticonvulsant effect. Importantly, the combination of EF1502 and tiagabine did not result in a greater than additive effect in the rotarod behavioral impairment test. In subsequent in vitro studies conducted in HEK-293 cells expressing the cloned mouse GAT transporters mGAT1 and mGAT2, EF1502 was found to noncompetitively inhibit both mGAT1 and the betaine/GABA transporter mGAT2 (K-i of 4 and 5 muM, respectively). Furthermore, in a GABA release study conducted in neocortical neurons, EF1502 did not act as a substrate for the GABA carrier. Collectively, these findings support a functional role for mGAT2 in the control of neuronal excitability and suggest a possible utility for mGAT2-selective inhibitors in the treatment of epilepsy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available