4.6 Article Proceedings Paper

Tunable photonic bandgap structures for optical interconnects

Journal

OPTICAL MATERIALS
Volume 27, Issue 5, Pages 740-744

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.optmat.2004.08.007

Keywords

-

Ask authors/readers for more resources

As continued progress towards faster, low power consuming microelectronic devices becomes increasing difficult due to the scaling challenges of electrical interconnects, it becomes even more critical to explore alternative technologies. Tunable porous silicon photonic bandgap structures are viable building blocks for optical interconnects, which present a possible long term solution to the interconnect problem. Forming the structures on a silicon platform provides the advantage of easier integration with current semiconductor processing techniques. In this work, tuning of the optical properties is controlled by liquid crystals (LCs) that are infiltrated into the silicon matrix. Active tuning is demonstrated both out-of-plane, with one-dimensional porous silicon photonic bandgap microcavities, and in-plane, using two-dimensional porous silicon photonic bandgap, structures. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available