4.6 Article

Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 270, Issue 1-2, Pages 13-19

Publisher

SPRINGER
DOI: 10.1007/s11010-005-2541-2

Keywords

adriamycin; H9c2 cells; apoptosis; caspase; p53

Categories

Ask authors/readers for more resources

The cardiotoxicity of adriamycin limits its clinical use as a powerful drug for solid tumors and malignant hematological disease. Although the precise mechanism by which it causes cardiac damage is not yet known, it has been suggested that apoptosis is the principal process in adriamycin-induced cardiomyopathy, which involves DNA fragmentation, cytochrome C release, and caspase activation. However, there has been no direct evidence for the critical involvement of caspase-3 in adriamycin-induced apoptosis. To determine the requirements for the activation of caspase-3 in adriamycin-treated cardiac cells, the effect of a caspase inhibitor on the survival of and apoptotic changes in H9c2 cells was examined. Exposure of H9c2 cells to adriamycin resulted in a time- and dose-dependent cell death, and the cleavage of pro-caspase-3 and of the nuclear protein poly (ADP-ribose) polymerase ( PARP). However, neither the reduction of cell viability nor the characteristic morphological changes induced by adriamycin were prevented by pretreatment with the general caspase inhibitor z-VAD.FMK. In contrast, caspase inhibition effectively blocked the apoptosis induced by H2O2 in H9c2 cells, as determined by an MTT assay or microscopy. We also observed that p53 expression was increased by adriamycin, and this increase was not affected by the inhibition of caspase activity, suggesting a role for p53 in adriamycin-induced caspase-independent apoptosis in cardiac toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available