4.7 Article Proceedings Paper

Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method

Journal

IEEE TRANSACTIONS ON POWER SYSTEMS
Volume 20, Issue 1, Pages 59-66

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2004.840416

Keywords

confidence interval; deregulated power market; extended Kalman filter; market clearing price; neural networks; prediction

Ask authors/readers for more resources

Market clearing prices (MCPs) play an important role in a deregulated power market, and good MCP prediction and confidence interval (CI) estimation will help utilities and independent power producers submit effective bids with low risks. MCP prediction, however, is difficult, since MCP is a nonstationary process. Effective prediction, in principle, can be achieved by neural networks using extended Kalman filter (EKF) as an integrated adaptive learning and CI estimation method. EKF learning, however, is computationally expensive because it involves high dimensional matrix manipulations. This paper presents a modified U-D factorization method within the decoupled EKF (DEKF) framework. The computational speed and numerical stability of this resulting DEKF-UD method are significantly improved as compared to standard EKE. Testing results for a classroom problem and New England MCP predictions show that this new method provides smaller CIs than what provided by the BP-Bayesian method developed by the authors. Testing also shows that our new method has faster convergence, provides more accurate predictions as compared to BP-Bayesian, and our DEKF-UD MCP predictions are comparable in quality to ISO New England's predictions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available